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SUMMARY

Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise
from the finite element (FE) discretisation of the time-independent equations of motion of the incom-
pressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce
interpolation for the pressure to satisfy the Brezzi–Babuska condition. The k– l model is used to complete
the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods
of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared
(CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is
based on the FAS algorithm of Brandt, and uses two and three levels of grids with a ‘V-cycling’ schedule.
These methods are all compared to the non-symmetric frontal solver. Copyright © 1999 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Computational fluid dynamics (CFD) plays an increasingly important role in the design of
modern day industrial components. Of the various computational methods [1–6] of discretis-
ing the governing equations and spatial domains, the finite element method (FEM) has the
capability of accepting complex geometries in an integrated fashion, making it particularly
interesting to the designers of complex components such as gas turbine blades and the cooling
system for these. However, it has always been the problem of the FEM that larger computa-
tional times have been associated with it. This is especially the case in the area of incompress-
ible and turbulent fluid flow.

For the numerical solution of incompressible fluid flow, it is possible to class the most
commonly used computational methods into those that solve by using an artificial compress-
ibility method, those that use an integrated approach and those that use a projection (or
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fractional step) method. A prototype of the artificial compressibility methods is the al-
gorithm presented by Chorin [7]. In the area of projection methods, the early work of Tuan
and Olson [8], and Schneider and Raithby [9] form a solid basis for these types of methods,
with more recent elaboration by Patankar [10] and Gresho [11].

In this investigation, the method of reduced interpolation originally proposed by Taylor
and Hood [12] is adopted, in which a lower-order of interpolation at element level is used
for the pressure variable in comparison with the velocity variables. This specification en-
sures that the Brezzi–Babuska condition [13] is satisfied, and part of the attraction of the
method is that no artificial up-winding methods are required. The method has been used
successfully in applications of incompressible flow to laminar and turbulent flow regimes,
using first- and second-order turbulence models [14–16] in two- and three-dimensions with
varying levels of geometric complexity. The method can be said to be solid and reliable, in
the sense that no convergence problems are associated with it. However, the growth of
computing time with problem size renders it costly for large problems, especially in three-
dimensions, and with the second-order closure models, in which more variables need to be
solved for at each non-linear iteration. In a first instance, this could be attributed to the
fact that until recently workers had stuck to using the non-symmetric frontal solver for the
matrix equations, particularly for the velocity–pressure matrix equations. It is well-known
that the frontal solver, being a direct matrix solver, shares similar asymptotic convergence
rates as these, which can be as good as O(a2N) where a is the front width, and N is the
number of unknowns [17].

Iterative solvers on the other hand, give theoretically better asymptotic convergence
rates, such as O(N1.6) [18], but it is only recently that they have been applied to the
solution of incompressible fluid flow with the reduced interpolation and FEM [19].
However, the method of reduced interpolation was found to create very ill-conditioned
stiffness matrices partly due to large off-diagonal non-symmetric terms, and zeros on
the leading diagonal due to the pressure. In view of this ill-conditioning, the regions in
which computational time improves could only be observed with exceptionally large
problems.

Another type of solution algorithms are the multigrid methods. These methods were
originally developed for elliptic partial differential equations by Fedorenko [19] and were
subsequently formalised by Brandt [5] to cover other systems of equations. In CFD, Brandt
[20] gave some early outlines of the application of the method. There have since been many
applications to the Euler and Navier–Stokes equations, but the application to turbulent
fluid flow is more recent, Yokota [21], Bai and Fuchs [22], and others, mostly using either
finite difference or finite volume methods. In terms of incompressible flow and FEM, it is
only very recently that work has been appearing, e.g. Lonsdale [23], Webster [24], Xia and
Taylor [25] and Wille [26].

The main attraction of multigrid methods is that they offer the theoretical possibility of
obtaining convergence rates that are directly proportional to the number of unknowns, i.e.
asymptotic rates of O(N).

In this investigation, a selection of Lanczos-type solvers (based on gradient reduction
schemes) are applied to the FEM solution of turbulent and incompressible flow using the
k– l model of turbulence. Subsequently, the fastest of these iterative solvers is coupled with
a multigrid algorithm, and the results are compared with the frontal solver in terms of the
CPU (central processing unit) time used.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 1. Showing the type of subdivision used in the multigrid solution procedure to get from of a coarse mesh to
a finer mesh.

2. THE EQUATIONS OF MOTION

Standard manipulations of the Navier–Stokes equations using the concept of fluctuating
variables and time-averaging are used to arrive at the following set of equations:

1. Time-averaged continuity
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3. Turbulence kinetic energy equation
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Figure 2. Geometry and typical meshes used for the example of turbulent flow between parallel plates
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Figure 3. Horizontal velocity, u, predicted by the k– l model compared with the experimental results of Laufer [28] and
Hussain and Reynolds [29].

and,

mS=
mT

sK

+m. (6)

In the above equations, the following notation has been adopted: u and 6 refer to the
time-averaged horizontal and vertical velocity, respectively; k refers to the turbulence kinetic
energy and l refers to the Prandtl length scale; mT refers to the localised turbulence viscosity
and is given by

mT=Cm r k1/2 l, (7)

where r is the density. In all the equations, me=mT+m, is known as the effective viscosity and
is made up of the sum of the laminar viscosity of the fluid and the localised turbulence
viscosity. Furthermore, sK, Cm and CD are constants which have been taken as 1.0, 0.22 and
0.418, respectively, following the work of Rance [27].

The length scale, l, was determined by an equation dependent on the geometric position
within the flow field.

3. THE FINITE ELEMENT SOLUTION TECHNIQUE

Nine-noded quadrilateral isoparametric elements, with reduced order of interpolation for the
pressure, are used and the resulting non-linear, non-symmetric matrix equation can be written
in the form

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Hb= f, (8)
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The terms in the finite element stiffness matrix H and the right-hand side vector f can be found
in Reference [16]. A Picard scheme is used for the non-linear solution that, if b0 is an initial
approximation to Equation (7), can be expressed as a recurrence relationship of the form

b n*=bn−1

b n+1=lb n*+ (1−l)bn,
(10)

where, n is the current iteration, b n* is the value used for the non-linear terms in the stiffness
matrix and l is the relaxation factor which usually takes values in the [0, 1] range. In the
current investigation, l was taken as 0.5 and the scheme was said to have converged when

�bn+1−bn �
�bn � 5o, (11)

where o is the tolerance, which was taken in this investigation as 10−2.

4. MATRIX SOLVING TECHNIQUES

At each iteration of the non-linear scheme, it is necessary to solve a set of linearised matrix
equations on the form

Au=b, (12)

where u is the vector of unknowns.
In this investigation, matrix solving algorithms belonging to each of the direct, iterative and

multigrid groups have been studied to see which are able to cope with the type of matrix
presented by A, namely, large and non-symmetric, with zeros possibly occurring on the leading
diagonal causing severe ill-conditioning.

4.1. The frontal method

This method was first devised by Irons [15] and proved to be effective for symmetric
matrices. The prolongation to non-symmetric matrices was then implemented by Hood in 1976
[6]. Since then, the method has been used exhaustively in many finite element applications.

The difference between direct Gaussian elimination and the frontal method is that in
Gaussian elimination, the whole of the stiffness matrix has to be stored in the core or main

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)



ITERATIVE AND MULTIGRID METHODS 615

Figure 4. Turbulence kinetic energy, k, predicted by the k– l model compared with the experimental results of Laufer
[28] and Hussain and Reynolds [29].

memory of the computer, whereas in the frontal method, only certain element stiffness
matrices are stored at any one time in the core. The equations from a limited number of
element stiffness matrices are assembled and then solved by Gaussian elimination and the
contributions towards the variables that they represent are stored in the secondary memory.
The elements of the mesh are traversed one by one in the order in which they are numbered.
The line on the mesh dividing elements for which all equations have been assembled and those
which have not is called the front and the number of unknown variables along the front is
called the front width. The maximum front width encountered on the mesh is used to
determine the maximum number of equations stored in the core at any one time and can be
minimised by numbering the elements of the mesh in a certain manner.

The frontal method can be divided into four main steps:

1. A prefrontal operation. In this step, the last appearance of nodes is recorded and the
maximum front width encountered on the mesh is computed.

2. Assembly. The element stiffness matrices are assembled into the frontal matrix, while the
front width is less than the maximum front width, or until all element stiffness matrices
have been assembled.

3. Elimination. The component which is to be used as a pivot is determined and the pivotal
row is then normalised. The row and column of the pivotal component are then eliminated
and deleted, and the pivotal equation written to disk.

4. Back-substitution. All equations previously written to disk are then reloaded in reverse
sequence and subsequently a normal back-substitution process is undertaken.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 5. Geometry and typical mesh used for the example of turbulent flow over a backward facing step at
Re=3025.

4.2. The iterati6e matrix solution techniques

Most iterative methods work by splitting the matrix A as A=K−R. The basic method then
comes down to a recurrence relationship of the form

Kui=Rui−1+b, (13)

where u0 is an initial approximation to the solution. In this paper, all vectors have be denoted
by an underlined, bold character, scalars have been denoted by Greek symbols and matrices
have been denoted by a double underline.

The residual is defined at iteration i to be

ri=b−Aui. (14)

Using Equation (13), Equation (12) can be rewritten as

ui=ui−1+K−1 ri=u0+a0 K−1r0+ · · · +ai−1(K−1A) i−1K−1r0. (15)

Thus, ui can be defined as a vector from the ith-dimensional Krylo6 subspace, denoted

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 6. Horizontal velocity, u, predicted by the k– l model compared with the experimental results of Briard [30] and
Atkins [31] backward facing step at Re=3025.

Figure 7. Turbulence kinetic energy, k, predicted by the k– l model compared with the experimental results of Briard
[30] and Atkins [31] for the backward facing step at Re=3025.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Ki(K−1A; K−1r0), which is spanned by the vectors �K−1r0, . . . ,(K−1A)i−1K−1r0�. For Lan-
cosz-type solvers, a suitable basis is chosen for K(A; r0) and Equation (11) is solved by its
projection onto this subspace.

In the following subsections, the iterative solvers examined in the course of this investigation
will be described in terms of the above notation.

4.2.1. The conjugate gradient (CG) algorithm. In the conjugate gradient (CG) algorithm of
Hestenes and Stiefel [1], the recursion is chosen so that the A-norm of the error is minimised
over the current subspace, i.e. the current ui is chosen such that (ui−u, A(ui−u)) is minimal
over all ui in Ki(A; r0).

Figure 8. Velocity vectors for turbulent flow over a backward facing step at Re=3025.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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For the CG algorithm, positive definiteness and symmetry of A is required in order to
guarantee convergence. A robust way to create a converging algorithm for non-symmetric
systems is obtained by applying the CG method to the normalised equations for the linear
system

ATAu=ATb. (16)

This application of the CG to the normalised equations results in an algorithm known as the
least squares conjugate gradient (LSCG) and can be given as

r0=b−Au0

p0=s0=ATr0

do for i=1 . . .

qi=Api−1

ai= (si−1, si−1)/(qi, qi)

ui=ui−1+ai pi−1

ri=ri−1−ai qi−1

si=ATri

bi= (si, si)/(si−1, si−1)

pi=pi−1+bi pi−1

If

ri


bi

5o then stop

End do loop

This algorithm can be shown to have the following features:

1. If the matrix A is symmetric positive definite and of size n×n then the algorithm will
always converge in n steps [18].

2. The reduction of the norm of the residual is monotonic decreasing [18].

4.2.2. The biconjugate gradient (BCG) algorithm. Another Lancosz-type algorithm which can
be applied directly to the original system of equations is the biconjugate gradient (BCG)
algorithm of Fletcher [2] in which an augmented system�A

0
0

AT

��u
ũ
�

=
�b

b
�

, (17)

is used to compute u. With this system, there comes a biresidual defined as

r̃i=b−Aũi. (18)

It can be shown that the residual and biresidual vector can be written as polynomials, i.e.
ri=Pi(A)r0 and r̃i=Pi(AT)r0. Furthermore, it can be shown that these polynomials can be
used as a basis for the Krylo6 subspace Ki(AT; r̃0).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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The BCG algorithm can be written as:
r0=b−Au0

r̃0=r0; q0= p̃0=0; r0=1
do for i=1 . . .

ri= (r̃i−1, ri−1)

bi=
ri

ri−1

pi=ri−1+bi pi−1

p̃i= r̃i−1+bi p̃i−1

si= (p̃i, Api)

ai=
ri

si

ri=ri−1−ai Api

r̃i= r̃i−1−ai ATp̃i

ui=ui−1+ai pi

If

ri


bi

5o then stop

End do loop
The BCG algorithm does not have a monotonic decreasing residual, as in the case of LSCG,

but the algorithm has proven to be stable and more efficient than the LSCG solver for a
certain class of problems [17].

4.2.3. The conjugate gradient squared (CGS) algorithm. For the conjugate gradient squared
(CGS) algorithm of Sonneveld [3] instead of calculating the biresidual, the residual is
calculated directly from

ri=Pi
2(A)r0. (19)

The CGS algorithm can be summarized as
r0=b−Au0

r̃0=r0; q0=p0=0; r0=1
do for i=1 . . .

ri= (r̃, ri−1)

bi=
ri

ri−1

zi=ri−1+bi qi−1

pi=zi+bi(qi−1+bi pi−1)
vi=Api

si= (ri, vi)

ai=
ri

si

qi=zi−ai vi

ri=ri−1−ai A(zi+qi)
ui=ui−1+ai(zi+qi)

If

ri


bi

5o then stop

End do loop

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 9. Pressure distribution along the lower wall compared with the experimental data of Briard and Atkins
backward facing step at Re=3025.

This algorithm was found by Sonneveld [3] to be more efficient than BCG and LSCG for
a certain problems, but he found that it suffered from instability on convergence, particularly
for problems with highly variable coefficients.

4.2.4. The biconjugate gradient squared stabilised (BCGSTAB) algorithm. Finally, for the
biconjugate gradient squared stablised (BCGSTAB) algorithm of Van Der Vorst [4], a different
basis is chosen, and in this case the residual can be written in the form

ri=Qi(A)Pi(A)r0, (20)

where Qi(A)= (I−v1A)× (I−v2A)× · · · × (I−vi A).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 10. (a) Geometry and boundary conditions of the Stokes flow problem, (b) example of a structured
quadrilateral mesh used for problem, (c) example of an unstructured quadrilateral FE mesh used for problem, (d)

contours of c from the FE solution of Stoke’s equation.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 11. Reduction of the residual for all the solvers for the Stoke’s problem on a given mesh.

Figure 12. Same as previous figure, but showing how more inner iterations are required by the LSCG solver compared
with the other solvers for the Stoke’s flow problem.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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The full BCGSTAB algorithm is:

p0=r0=b−Au0

v0=q0=0

ṽ0=a0=b=1

do for i=0 . . .

b0 = (p, ri−1)

vi=
b0
b

×
ṽi−1

ai−1

b=b0
qi=ri−1−ṽi(qi−1−ai−1vi−1)

vi=Ai qi

ṽi=
b0

(p, vi)

s=ri−1−ṽi vi

t=As

ai=
(t, s)
(t, t)

ui=ui−1+ai s+ṽi qi

ri=s−ai t

If

ri


bi

5o then stop

End do loop

4.3. The multigrid method

The basic idea behind the multigrid method can be understood from the point of view of
error wavelength analysis. If the error in an approximate solution can be considered as a
wavelength of long, medium or short range, then the use of Fourier analysis allows the
verification that short wavelength modes of the error decay faster on finer meshes than a
longer wavelength and 6ice 6ersa, i.e. that the medium and long ranges decay faster on coarser
meshes. Using this fact, it is possible to construct a series of meshes which are interconnected
and solve across them to decrease the various ranges of wavelength across this hierarchy of
meshes in a way which turn out to be very efficient.

Before describing the algorithm used in this investigation, it is necessary to introduce some
new notation. The notation of Wesseling [14] has been adopted in which {Gk: k=1, K} be a
sequence of increasingly finer meshes with k=1 being the coarsest level and k=K correspond-
ing to the finest level. Furthermore, let P and R be intermesh transfer operators, where P
stands for Prolongation and R stands for Restriction, such that P interpolates the vector on a
coarse mesh on to a fine mesh, and R gathers values from a finer mesh onto a coarser mesh.

If the discretised problem at each level of mesh is denoted by

Lk(uk)=bk (21)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 13. Comparison of CPU time on a DEC 3000 Alpha workstation vs. mesh front width for Stoke’s problem
using the frontal solver, the LSCG solver and preconditioned BCGSTAG of Van Der Vorst.

Then the basic recursive algorithm is comprised of two main routines and can be written as
given by Wesseling [14]:

MG(uK, u0
K)

1.0 f K=bK

2.0 do i=1, ntg
3.0 MG01(uK, u0

K, f K, . . . , K)
4.0 u0

K=uK

5.0 end do
In MG00, the routine MG01 is given by:

3.00 MG01 (uk, u0
k, f k, . . . , k)

3.01 if k=1 then
3.02 S(uk, u0

k, f k, n, k)
3.03 else
3.04 S(uk, u0

k, f k, n, k)
3.05 rk= f k−Lk(uk)
3.06 Choose u0

k−1 and sk−1

3.07 f k−1=Lk−1(u0
k−1)+sk−1Rk

k−1rk

3.08 MG01(uk−1, u0
k−1, f k−1, . . . , k−1)

3.09 uk=uk+sk−1Pk
k−1(uk−1−u0

k−1)
3.10 S(uk, u0

k, f k, n, k)
3.11 Endif

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 14. Reduction of the norm of the residual with BCG and LSCG for the turbulent flow between parallel plates
test case on a given mesh.

Figure 15. Reduction of the norm of the residual with CGS and LSCG for the turbulent flow between parallel plates
test case on a given mesh.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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In MG00, the solution procedure commences on the finest mesh, proceeds to move up to
the coarse mesh and, finally, ends up back on the fine grid. Due to this movement, this
algorithm is said to use a V-cycling schedule. The number of times that the V-cycle is
performed is pre-set by the user as ntg.

In MG01, K is the finest level of mesh, u0 is an initial estimate to the solution at the
level of mesh indicated by its superscript and sk−1 is a relaxation parameter. In this
investigation, its value was taken as 1.0 so that the algorithm corresponded with Brandt’s
original FAS (full approximation scheme) algorithm [5].

A natural selection for the prolongation operator, P, in the FEM is to use the element
shape functions. For the restriction operator, R, the method of simple injection, which
consists of using values at overlapping nodes which correspond to the finer mesh. As
described in Section 3, the type of element used is the nine-noded quadrilateral element.
An element centred subdivision was used to create the mesh hierarchy, as shown in Figure
1.

Associated with each level of mesh is a smoothing algorithm (matrix solving technique),
S(u, u0, f, n, k), where u0 is an initial estimate, f is the right-hand side vector, u is the vector
of unknowns, n is the maximum number of inner iterations of the solver to use at the
current level of mesh, k. The choice of solver for S was taken to be one of the iterative
solvers described in the previous section, i.e. LSCG, BCG, CGS or BCGSTAB.

Figure 16. Reduction of the norm of the residual with BCGSTAB and LSCG for the turbulent flow between parallel
plates test case on a given mesh.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)
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Figure 17. Reduction of the norm of the residual vs. non-linear iterations for the turbulent flow between parallel
plates test case on a given mesh.

5. NUMERICAL EXAMPLES AND ASSESSMENT

5.1. Comparison with experiment using the frontal sol6er

5.1.1. Turbulent flow between parallel plates. The geometry and boundary conditions used for
this example are shown in Figure 2(a). The Reynolds numbers (Re) examined ranged from
approximately 15000 to 30000. An example of the type of mesh used to solve the equations is
shown in Figure 2(b). In Figure 3, the horizontal velocity, u, can be seen to accurately predict
the experimental results of Laufer [28] and Hussain–Reynolds [29]. Figure 4 shows the
comparison of the turbulence kinetic energy, k, to the experimental results.

5.1.2. Turbulent flow o6er a backward facing step for Re=3025. The geometry and boundary
conditions used for this example are shown in Figure 5(a). An example of the type of mesh
used to solve the equations is shown in Figure 5(b). In Figure 6, the horizontal velocity, u,
shows the comparison with the experimental results of Briard [30] and Atkins [31]. Figure 7
shows the comparison of the turbulence kinetic energy, k, from the same experimental results.
Figure 8 shows the velocity vectors for this example, and Figure 9 shows a comparison of the
pressure distributions along the lower wall.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 609–634 (1999)



ITERATIVE AND MULTIGRID METHODS 629

5.2. Assessment of the iterati6e sol6ers

5.2.1. Stoke’s equation in a rectangular domain. A standard finite element solution of Stoke’s
equation was coded to initialise the implementation of the iterative solvers described in the
previous section. These were then tested upon the geometry shown in Figure 10(a), with the
boundary conditions given in the same figure. The solution procedure in this example allowed
structured and unstructured meshes to be used as shown in Figure 10(b) and (c), respectively.
The values of the stream function, c, are shown as contours in Figure 10(d). For a given mesh,
the reduction of the norm of the residual was used as an indicator of the rate of convergence,
as shown in Figure 11. Simple preconditioning was also implemented in the form of diagonal
preconditioning. It was found that while there was not much difference between CGS,
BCGSTAB and BCG, all of these were found to be considerably faster than LSCG (see Figure
12). Preconditioned BCGSTAB was found to be the most efficient solver for this problem
followed by a 10% difference with unpreconditioned BCGSTAB. Considerable time saving was
found by using the iterative solvers over the frontal solver (see Figure 13).

5.2.2. Turbulent flow between parallel plates. A series of meshes were constructed with an
increasing number of elements by subdividing each element into four new elements. The
iterative solvers were then used to solve the matrix equations on each of these meshes, the
results were correlated and CPU solution times in seconds were obtained on a DEC Alpha
workstation using 96 Mbytes of main memory.

Figure 18. u velocity distribution for the various converging solvers.
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Figure 19. CPU time per non-linear iteration vs. front width for the various converging solvers.

Figure 14 compares the reduction of the norm of the residual vector, 
r0
/
b
, during a
given non-linear iteration using the LSCG solver with the BCG solver. Figure 15 shows the
comparison of LSCG with the CGS, and Figure 16 shows the comparison of LSCG with
BCGSTAB. The inner tolerance of the iterative solvers was set to 10−6.

The monotonic decreasing path of the residual with LSCG (which can be predicted from
theory) is clear in these figures. Unsurprising as well are the erratic paths of descent of
BCG and CGS in comparison with LSCG. However, a surprising result was that an almost
equal number of iterations were required by these solvers than the LSCG solver at each
non-linear iteration. Another surprising result was that the BCGSTAB solver failed to
reduce the residual below a 10−2 drop, thus causing the divergence of the non-linear
solution.

The drop in the norm of the residual versus the non-linear iterations is shown in Figure
17, demonstrating that convergence to the desired tolerance occurs at around the 10−4

mark. Also highlighted is the divergence occurring when BCGSTAB was used. Figure 18
shows that there is no difference in the u velocity profile when the different solvers are
used. Figure 19 shows CPU time used by the different solvers plotted against the maximum
mesh front width. The following points should be noted:

1. The frontal solver shows its characteristic (but undesirable) quadratic increase in CPU
time with the mesh front width,
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2. The iterative solvers show a flatter CPU growth rate,
3. The LSCG solver is the most efficient solver in this case, allowing up to 64% time saving

over the frontal solver at the largest front width,
4. CGS allowed up to a 52% saving over the frontal solver,
5. BCG allowed up to a 16% saving over the frontal solver.

5.3. Assessment of the multigrid sol6ers

Figure 20 shows one of the three level hierarchy of meshes used to solve the turbulent flow
in a channel test problem with the multigrid algorithm. The multigrid algorithm implemented
used a V-cycling schedule with the FAS of Brandt [5]. The solver used at each level of grid was
the LSCG solver. Figure 21 shows how the rate of convergence on a single grid can be
improved by using a second and third level of mesh multigrid solver. In this figure, the single
grid solver (1 GRID SG in legend) uses 100 inner iterations at each non-linear iteration, and
the result is that these are not enough to guarantee convergence. However, when the multigrid
coarse grid correction is added to the solution procedure, and 100 iterations are performed on
the second level of grid, maintaining the same number of iterations on the first level of grid,
it is possible to obtain convergence. Furthermore, if a third level is added to the multigrid
procedure, with 500 and then 1000 iterations at this level, and still using the same number of
iterations at the other levels, then the effect of the multigrid is to further improve the
convergence rate. In terms of the CPU time involved, Figure 22 shows how the second

Figure 20. Typical hierarchy of meshes used in the multigrid solution.
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Figure 21. Performance of single grid vs. 2- and 3-mesh multigrid solvers as a function of the residual and the number
of non-linear iterations.

level of mesh multigrid algorithm can be used to half the CPU time of the single grid
solution and that the third level of mesh algorithm can be used to decrease this by a further
7%.

6. CONCLUSIONS

It has been shown that iterative methods of the type used here can greatly reduce the solution
time of the matrix equations resulting form the finite element solution of turbulent fluid flow
when compared with the commonly adopted frontal solution technique. It has also been
demonstrated that the multigrid method can further accelerate the solution time of these
iterative methods by up to 57%.

Further research is needed to find ways of creating a more ‘user-friendly’ application of the
multigrid method than the one developed during the course of this investigation, possibly via
the inclusion of automatic mesh generation techniques, subsequently leading to adaptive
procedures.
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Figure 22. Performance of single grid vs. 2- and 3-mesh multigrid solvers as a function of the maximum relative
change in the velocity and the CPU time in seconds on the DEC 3000 Alpha.
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